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Faraday waves arise on the surface of a liquid in a container that is undergoing vertical 
periodic oscillations. Hysteresis occurs when both finite-amplitude solutions and the 
flat-surface solution are available. We derive a nonlinear model of Faraday resonance, 
extending the Lagrangian method of Miles (1976). The model is used to investigate 
hysteresis. The theoretical results are compared to previous experimental studies and 
to some new observations. It is found necessary to retain damping and forcing terms 
up to third-order in wave amplitude, and also the fifth-order conservative frequency 
shift, in order to achieve agreement with experiments. The latter fifth-order term was 
omitted from all previous studies of Faraday waves. The lower hysteresis boundary in 
forcing-frequency space is found in most cases to be defined by the lower boundary 
above which non-trivial stationary points exist. However, the stability of stationary 
points and the existence of limit cycles are also found to be factors in determining the 
lower hysteresis boundary. Our results also suggest an indirect method for estimating 
the coefficient of cubic damping, which is difficult to obtain either experimentally or 
theoretically. 

1. Introduction 
Faraday resonance is responsible for the excitation of surface waves in a vertically 

oscillating container, the name deriving from a paper by Faraday (1 83 1). Benjamin & 
Ursell (1 954) showed that the linear problem is characterized by Mathieu’s equation. 
Miles (1976, 1984, 1993) has studied nonlinear effects, adopting a variational 
approach. A good overview of the subject is given by Miles & Henderson (1990). 

Hysteresis occurs when constant finite-amplitude solutions and the flat-surface 
solution are both available for a particular frequency and amplitude of sinusoidal 
forcing, with the observed behaviour being dependent upon the initial conditions. Both 
the linear stability boundary of the flat-surface solution and the lower hysteresis 
boundary depend on the frequency and the amplitude of the forcing. In the frequency- 
amplitude plane, the stability boundary has a hyperbolic shape with its minimum (in 
amplitude) at the resonant frequency equal to twice that of the natural water wave 
frequency. In this plane, the hysteresis region is the area between the two boundaries. 

A mathematical model of Faraday resonance is derived here which captures the 
essential features of hysteresis that have been observed in some experiments (Simonelli 
& Gollub 1989; Douady 1990; Craik & Armitage 1995). Hysteresis has often been 
observed for values of forcing below the minimum value at which the flat-surface 
solution is unstable. The lower hysteresis boundary sometimes bifurcates from this 
neutral stability curve at a point away from the minimum and the hysteresis lower 
boundary is generally curved (figure 1 shows some new experimental observations of 
the linear stability boundary and the lower hysteresis boundary, for three neighbouring 
modes in a long rectangular tank; see Appendix A). The simple nonlinear theoretical 
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FIGURE 1 .  Experimental results showing acceleration (m ss2) against period (ms) for three neighbouring 
modes of 21, 22 and 23 half-wavelengths in a rectangular tank of length 70 cm with a water depth 
of 1.3 cm. 

model of a single mode by Miles (1976, 1984) has none of these features, in that it 
bifurcates from the minimum of the neutral stability curve, has no hysteresis below the 
minimum, and is a horizontal straight line (see figure 2(a)  discussed below). Later 
models by Douady (1990) and Milner (1991) better describe the bifurcation of the 
hysteresis boundary from the linear stability boundary and allow hysteresis below the 
minimum ; but the boundary remains straight and, if extended sufficiently, would meet 
the zero forcing axis (see figure 2(b) discussed below). 

Craik & Armitage (1995) investigated theoretically and experimentally the hysteresis 
of two-dimensional Faraday waves in a long rectangular tank. Their theoretical model 
yields a variety of more realistic-looking hysteresis regions, though certain terms 
neglected (a fifth-order, in wave amplitude, conservative frequency shift, and one of the 
third-order forcing terms) in their model are likely to be of comparable size to those 
retained. Further, they did not calculate the coefficients of the terms in their equations 
for particular experimental configurations but considered instead the general form of 
the equations. Accordingly, they did not investigate the dependence of hysteresis upon 
depth, surface tension, wavelength, tank dimensions, etc. 

The present paper, which follows on from Craik & Armitage (1995), calculates the 
various coefficients and provides a more rational derivation of the governing evolution 
equation which leads to the retention of the previously omitted fifth-order conservative 
frequency shift. We find that this fifth-order conservative term, a third-order forcing 
term, and a third-order damping term all combine to yield hysteresis regions similar to 
those observed in experiments. 

The simplest nonlinear model of Faraday resonance is provided by the equation 

k = -pA+i~A+iFA*+i17IA1'A, (1.1) 

(see Miles 1976, 1984) where A is the slowly-varying complex wave amplitude; the 
overdot denotes a time-derivative, the real constants p, 0, F represent non-dimen- 
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FIGURE 2. (a) Hysteresis diagram resulting from (1.1). (b) Hysteresis 
diagrams resulting from (I  .2). 

sionalized linear damping, frequency detuning from resonance, and the amplitude of 
the imposed vibrations, and I7 represents the cubic coefficient of nonlinear (Stokes) 
frequency modification. Equilibrium solutions with k = 0 give hysteresis as shown in 
figure 2(a), with the linear stability criterion F 2 (Q2 +p2)1/2 and the lower hysteresis 
boundary F = p on the left-hand side of the neutral stability boundary if 17 is positive, 
and on the right-hand side if l7 is negative. 

Douady (1990) and Milner (1991) instead proposed 

k = -pA+iOA+iFA*+i171A12A+dlA12A, (1 4 
which retains a cubic correction to the damping with real coefficient d. However, they 
ignore cubic forcing and the firth-order conservative frequency shift that can be of the 
same order of magnitude (see later). This produces hysteresis diagrams of the form 
shown in figure 2(b) corresponding to d positive and negative, respectively. In the 
experiments by Simonelli & Gollub (1989) and Craik & Armitage (1995) hysteresis 
diagrams somewhat similar to figure 2(b) (line a) were found, but the lower hysteresis 
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boundary turned upwards before reaching the line F = 0 and was curved rather than 
straight. Douady (1990) interpreted his observations in terms of figure 2(b)  (line b) (in 
fact, he observed no hysteresis in his experiment). 

If d < 0, then the cubic correction to the damping in (1.2) acts to enhance 
dissipation; if it is positive then it will act in opposition to the linear damping term, 
reducing dissipation. In the latter case, so long as d(A1' is sufficiently small, the 
combined effect of the two terms is dissipative; however, if dlAI2 exceeds ,u then the 
model clearly breaks down. The coefficient d is difficult to calculate or to measure 
experimentally. Milner (1991) and Miles (1993) both give expressions for d that are 
based upon the assumptions of large depth and small wavelength and waveslope, and 
that the surface is uncontaminated. However, this is often not the case; in particular, 
in the experiments described here and in Craik & Armitage (1995) these assumptions 
do not hold. Even the linear damping coefficient ,u is rather difficult to calculate or to 
measure experimentally. Both damping coefficients, ,u and d, will depend upon viscous 
boundary layers at  the sidewalls and the bottom of the tank, surface contamination, 
etc. (see Miles 1967). However, ,u and d may be estimated indirectly by comparison of 
theory and experimental data, as described in $5. 

Miles (1993) and Craik & Armitage (1995) both proposed a model equation that 
incorporates third-order forcing and third-order damping terms, namely 

k = -,uA +iSZA+iFA* +i17(A12A+d(A(2A+iF((A3 + 3 (AI2A*), (1.3) 

and this produces hysteresis somewhat like those in figure 2(b)  if F is chosen to be 
constant with respect to variations in P(note that an overbar does not denote complex 
conjugate). However, the coefficient of cubic-forcing F i s  proportional to F and so does 
not remain constant as F varies. Craik & Armitage (1995) showed that (1.3) can 
produce qualitatively all the observed effects of hysteresis. However, we here argue that 
a fifth-order conservative frequency shift may well be of comparable size to the cubic 
damping and cubic forcing terms, and so the inclusion of cubic damping and/or cubic 
forcing cannot be justified rationally without also retaining a fifth-order conservative 
term in IAI4A. Here, as in Miles (1976, 1984), Umeki (1991) and Umeki & Kambe 
(1989), a rational theory is developed in terms of a small parameter e which orders the 
terms in the governing equations. The cubic corrections to damping and forcing then 
appear formally at the same order in e as an IAI4A conservative term. 

Craik & Armitage (1995) mainly investigate a simplified version of (1.3) with the 
ii;'A3 term neglected. This still produces hysteresis qualitatively similar to observations, 
while permitting precise analytic description. Miles (1 993) mainly considered pattern 
selection and did not explicitly obtain the hysteresis boundary. 

Retention of cubic damping without the fifth-order conservative term leads to 
unrealistic results when d is positive; for then (i) sufficiently large waves grow 
indefinitely, and (ii) unless d is very small then not all finite-amplitude states are stable 
foci as pointed out by Milner (1991) and Craik (1994). 

Miles (1993) gives a formula for the coefficient of cubic forcing F i n  terms of depth, 
wavelength, surface tension and tank geometry, but the equivalent formula calculated 
here is not in agreement with this. In fact, Miles omitted the effect of the third harmonic 
of the dominant mode and we find that this contributes to the cubic forcing term. Our 
result and Miles' are often, but not always, close numerically. 

The experimental work of Craik & Armitage (1995) investigated water depths of 
approximately 1 cm and 2 cm, for which the shape of hysteresis regions differed 
markedly. Here, in Appendix A, we describe results for the intermediate water depth 
of 1.3 cm, using the same apparatus. Figure 1 shows the hysteresis diagram for three 
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neighbouring modes in this experiment. These results resemble those of Craik & 
Armitage with a depth of 2 cm, but are unlike those at 1 cm. One reason for this is that 
the coefficient I7 changes sign at a depth between 1 cm and 1.3 cm. 

Our mathematical model is derived using the variational method due to Miles 
(1976, 1984, 1993), Umeki & Kambe (1989) and Umeki (1991). Along the way, the 
Lagrangian is calculated up to sixth-order in the generalized coordinate for any 
discrete set of wave modes in an arbitrary cylinder of cross-section S undergoing 
vertical oscillations ; previously only fourth-order expansions have been derived (Miles 
1976). The initial generality of this derivation potentially allows the fifth-order 
conservative terms to be incorporated into other (future) Faraday wave problems (e.g. 
mode competition and pattern selection). Here a single two-dimensional mode is 
considered, but this restriction is made only towards the end of $2. Examination of a 
different geometry or multiple wave interactions up to fifth-order could be done by 
using the general Lagrangian given in $2 as the starting point. 

The derivation of the evolution equations is described in $3. This was algebraically 
very demanding and made extensive use of the symbolic manipulation computer 
package MAPLE. The nonlinear evolution equations are arrived at in the form 

(1.4) I -- - -pA+iOA+iFA*+iZilA12A, 
a71 

a 7 2  

- NIAI2A+iF(A3+3 IA12A*)-iihlA14A, 
aA -- 

where r1 and r2 are separate slow and very slow timescales. The lower hysteresis 
boundary is investigated analytically in $4 and computationally in $ 5 ,  by considering 
the existence of finite-amplitude stationary solutions. This allows a comparison 
between experimental and theoretical results. Numerical lower hysteresis boundaries 
from our model can be directly compared both to experimental observations 
and to the corresponding boundaries produced using the simpler model (1.3). This 
clearly shows that our model produces lower hysteresis boundaries that are 
quantitatively and qualitatively closer to observations than the previous ‘best’ model. 
Unfortunately, the experiment of Simonelli & Gollub (1989) cannot be described by 
our model since they observed three-dimensional waves and we have only considered 
two-dimensional waves here, though broad qualitative agreement is obtained. 
However, we anticipate that quantitative agreement can be achieved with a three- 
dimensional model similar to that of (1.4). 

The numerical solutions also indirectly give estimates for the coefficient of cubic 
damping. This is achieved by choosing the coefficient so that the experimental and 
theoretical lower hysteresis boundaries are as close as possible (described later). 

The stability of finite-amplitude solutions is investigated in $6. In some cases this 
leads to a revised theoretical prediction of the lower hysteresis boundary. Also time- 
dependent solutions of the evolution equation are briefly discussed. It is found that for 
the 2 cm depth experiment, the hysteresis region contains small stable limit cycles as 
well as stable stationary points : these limit cycles represent standing waves with 
amplitudes that experience a (small) slow oscillation on top of the fast sinusoidal 
oscillation at the basic frequency. This modulation of the wave amplitude would be 
difficult to observe experimentally with the present apparatus because the amplitude of 
the slow oscillation is never more than 1&20 % of the amplitude of the fast oscillation, 
and the latter amplitude is only a few millimetres. Further experimental work is needed 
with more accurate equipment to investigate these stable limit cycles. 
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Finally, a word on terminology. The lower hysteresis boundary is the theoretical 
lower boundary above which non-trivial solutions (stationary or time-oscillatory) exist 
and are stable. We will show that this usually coincides with the boundary above which 
non-trivial stationary points exist, since these stationary points are normally, but not 
invariably, stable. Sections 4 and 5 are concerned with calculating this boundary. 
However, as discussed in 9 6 ,  the boundary above which non-trivial stationary points 
are stable is sometimes distinct from the boundary above which non-trivial stationary 
points exist, and in this case, the lower stability boundary is the appropriate lower 
hysteresis boundary. 

2. Derivation of generalized Lagrangian 
Consider capillary-gravity surface waves of an inviscid liquid of density p in a closed 

cylindrical container of cross-section S and depth d. Let (x, y ,  z )  be the coordinates in 
a reference frame fixed in the container, with the bottom being identified as the plane 
z = -d, and S being independent of z .  Let n be the outward normal to the fluid 
boundary, and let the free surface be denoted by z = q(x ,y ,  t). Assuming that the fluid 
motion is irrotational, it may be represented by the velocity potential $(x, y ,  z, t )  where 
V $  is the fluid velocity. 

Following Miles (1976), the governing evolution equations can be derived using the 
Lagrangian method by applying the variational principle. The dynamic boundary 
condition is not explicitly used, but is instead incorporated intrinsically as part of the 
variational principle. The kinematical boundary-value problem is 

Vz# = 0, ( x ,Y )ES ,  -d < z < 7, 

n - V $  = 0 on container, $,-V7-V$ = T~ on z = 7. 

This can be derived from the variational problem 

with respect to variations a$ of $ for given 7. 
Now take 

~(x, Y ,  t )  = r n ( t )  $n(x, y ) ,  $(x7 Y ,  Z, t )  = $n(t) xn(x, y ,  z)7 (2.3a, b) 

where 7, and $, are generalized coordinates, {k,} are the eigenvalues and {$,} and {x,} 
are the eigenfunctions from 

(Vz+ k i )  $, = 0, n.V$,  = 0 on as, (2.4a, b) 

(2.4c, d )  

xn(x,  y ,  z )  = $,(x, y )  sech ( k ,  d )  cosh {k,(z+ d ) } ,  n not summed, (2.4e) 

and am, is the Kronecker delta function. 
Repeated indices are summed over the set of eigenfunctions except where stated. 
Substituting (2.3) into (2.2) gives 
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where 

Applying the variational principle to (2.5) (by making I stationary with respect to 

4 n  = In, i m ,  (2 * 7 )  

In, = dn&kL. (2.8) 

variations in 4) gives 

where 

Substituting (2.3a) and (2.4e) into (2.6) and expanding about z = 0 using Taylor's 
theorem gives (see appendix of Miles 1976) 

dmn = amn+Czrnnjn rz+~Cjlrnnkirj~z+~CijzmnJnkiri~jrz 

+hchijlmn ki r h  ?li T j r l +  -.-) (2.9) 

jmn = a d ,  + (CzmJmjn +Dlmn) rz +a[cjzm,(jmki +j, k k )  +DjlmnCim +jdI rj 71 

+ 3CijimnCimjn kk +jmjn k i  + 2kL k i )  + Dijtmn(kL + k i  + 2jmjn)I ~i rj 71 
+&[Chijl,,(j, k4, + 3jm k i  k k  + 3j, k i  k; +j, k4,) 

+ Dhijzmn(jm kk + 3Jn kk + 3jm k i  +j, kill r h  ~i qj 71 + . . . (2.10) 
where 

j ,  = k ,  tanh (k ,  d) ,  

(2.11) I c,,, = s-l JJ$t $m +n ds,  Cjlmn = S-1 JJ$j $1 $rn 1c.n d s  etc. 

Dlmn = S-' JJ$l Vlc.,.V$, dS, Djlmn = S-lll$j $l V$,.V$, dS  etc. 

This now allows I,, to be calculated explicitly up to the term in rh yi  qj 7, from (2.8), 

The dynamical problem is now considered by constructing the Lagrangian. The 
though the result is very complicated and is not given here. 

kinetic energy of the fluid is described by 

where 
a,, = dmjljn.  (2.13) 

Substituting (2.9) and the expression for I,, into (2.13) gives 

'mn = S m n a m + a l m n ~ l + ~ a j l m n ~ j ~ l + ~ a i j l m n ~ i ~ j ~ l + ~ a h i j l m n ~ h ~ . I ~ ~ ~ l + ~ ~ ~ ~  (2.14) 

where 
.-1 an 'Jn Y (2.15) 
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The lengthy expression (2.19) for ahiilmn, which is about six times longer than that 
for aiilmn, is not given here: a copy may be obtained from the authors or from the 
editor. In the above expressions and in (2.19) the summing convention may at first 
appear complicated, but is quite straightforward. For example in (2.18), i, j ,  1, rn and n 
(which appear on the left-hand side) are not summed, whilefand g (which do not) are 
summed over the set of participating modes. 

In 93, where a single primary two-dimensional mode will be considered (along with 
its second and third harmonics), these considerably simplify using eigenfunctions and 
eigenvectors given by (3.13) and (3.14), respectively. The required non-trivial constants 
will then be 

(2.20) 

(2.21) 

1 1 
a11112 = a11121 = -~ kf(4 - 49k; a, a, + 24k;l af a; - 27k; a, a, + 2 16k;l a, a: a,), 

d 2  

= d2k ;  al(yal +?a, + 6k: a: a, - 54kq a, a, a,), 

a12111 = 442k;14, 

(2.22) 

k2 

a2 
allllll  = F k ;  a, -%kt a, - 9 2 -  200k: af a, + 216k; a, a, a, + 96k: a: a; + 864ky a; a; a,. 

(2.23) 
The potential energy due to the free-surface displacement is 

(2.24) 

where p is the density of the liquid, g is the acceleration due to gravity and z,  is the 
vertical acceleration of the container. The potential energy due to the surface tension 
is given by 

V, = /I(( 1 + (v~)2)1/2 - 1) dS, (2.25) 

where y is the coefficient of surface tension. 



This gives 

where 
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(2.26) 

(2.27) 

The Lagrangian is given by 

By defining 
L = (pS)-l(T- v, - V,). 

wk = gk, tanh (k ,  d )  (1 + h2ki), 

(2.29) 

(2.30) 

where wn is just the natural (linearized) frequency of the nth normal mode, d is the 
depth and h = (y/pg)l/z is the capillary length, the Lagrangian can be rearranged into 

(2.3 1) 

The higher-order terms in aijlm,,ahijlmn, and Ehijlmn were not retained in the 
previous work of Miles (1976, 1984, 1993), Umeki & Kambe (1989) and Umeki (1991). 
At lower orders, the formulations are in agreement. 

3. Derivation of evolution equation 

associated harmonics) will now be found, where there are no internal resonances. 
The evolution equation for a single principal two-dimensional mode (along with its 

The container oscillates as 

z ,  = e2fcos 2wt (E”2 I f 1  < g), (3.1) 

where 0 < E < 1 is a small parameter. 
It will be found useful to put 

f = f, + $A + O(s4), (3.2) 

where f, arises in the O(e4) equation and the perturbation f ,  from this value arises in 
the O(e6) equation. 

The generalized coordinate of the nth mode is written as (with n not summed) 

rfi(t) =sl, ean(P(71,72, e)cos (of) + d 7 1 ,  7 2 ,  e) sin (or)) 

+ E ~ U , ( A ~ ( ~ ~ ,  7 2 )  cos ( 2 4  + Bn(71, 72) sin ( 2 4  + Cn(~l ,  7&) 

+ ~ ~ a ~ ( D ~ ( 7 ~ ,  72)  cos (3wt)  + En(71, 72) sin ( 3 4  + F,(7,, T ~ ) )  + O ( E ~ ) ,  (3.3) 
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where the terms in p and q arise only for the principal resonant mode (n = l), 
r1 = 2wt,r2 = e4wt are dimensionless slow time variables, taken to be independent, 

l , n =  1 
a, = l/k, tanh (k, d)  and 6,, = i0, * 

Only n = 1 , 2 and 3 need to be considered here. Later (see equation (4.1)) p and q will 
be expanded in a series in e2 to emphasize the multiple timescales present in the 
problem. 

Substituting (3.1), (3.2) and (3.3) into (2.31), and averaging over a 2n/w interval of 
t ,  gives: 

E,lll(p2+q2)2 

P, q ? f O ?  w ,  {On, Bn7 cn>n=l, 2,37 {Dn7 En, Fn}n=l, 2 , 3  

{alrnn, ajlrnn}j,t,rn,n=1,2,39 a111122 a111212 a11211, a121119 a21111, allllll 

2 , 3 ?  

+e6X 

aP a4 aP a4 
arl arl ’ ar2 ar2 
_ _ _ _  f ,  Y7g7 Elllll E 1 1 1 3 7  E1122, E l l l l l 1 7  

+ O(e*), (3.4) 

i 
where repeated indices are summed over the set of participating modes and X is a 
highly complicated O( 1) expression that occupies many pages in MAPLE and which is 
omitted here for brevity. The ordering in (3.4) is based upon (w2-w3/2w2 = O ( 2 )  
which selects the single principal mode being considered from this point onwards. In 
(3.4) there is summing over n = 1,2,3. From Hamilton’s principle, ( L )  must be 
stationary with respect to variations of A,,  B,, C,, D,, En, F,. At O(e4) the averaged 
Lagrangian is made stationary with respect to variations in A,, B,, C, (e.g. by solving 
a(L) /aA ,  = 0 for A,) .  This gives (with n not summed) 

Equations (3.5) are then substituted into (L) .  At O(e4) (L)  can then be made 
stationary with respect to variations in p and q, which gives evolution equations in p 
and q for r1 variations. These are the same equations as derived by Miles (1976, 1984), 
namely 

- = - p A  + iQA + i& A * + iI7 [ A  I2A, 
aA 

a71 
( 3 4  
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where A = p + iq, and p is the coefficient of linear damping (artificially introduced at 
this stage) on the timescale T ~ .  Also, 

is the coefficient of the cubic (Stokes) frequency modification (in agreement with Miles 
1984) and 

(Note that the introduction of the linear damping term in (3.6) can be explained by 
using an appropriate dissipation function: see Milner 1991 ; Miles 1993). 

Trivial and non-trivial equilibrium solutions of this can be found, and their local 
stability analysed (see e.g. Nagata 1989). Hysteresis is found as shown in figure 2(a) for 
17 > 0. When 17 < 0, the lower hysteresis boundary is to the right, not to the left, of 
the neutral stability curve. Clearly, no non-trivial equilibrium exists for 

&<<, (3.9) 

a result sometimes at odds with experimental evidence, as already mentioned. 
The above equilibrium is found by putting 

which gives - 

, sin20=--, 
4 

+ (Fi - p y 2  

-4 
cos20 = 

- 

(3.10) 

(3.11) 

for the non-trivial solution. In $4(a) we shall perturb about this equilibrium on the line 
in forcing-frequency parameter space given by 

F, =p,  0 < ol. (3.12) 

That is, we shall take (3.11) and (3.12) as the basic solution about which perturbations 
will be made. 

The three eigenfunctions that must be taken into account are 

(3.13) 
mnx 2mnx 3mnx 

+1 = 4 2  cos 7, +2 = 2/2COST , +3= @ C O S T ,  

corresponding to spatial eigenvalues (i.e. wavenumbers) 

mn 2mn 3mn kl=--, k 2 = T ,  k 3 = -  I I ’  
(3.14) 

where I is the length of the container. These correspond to the two-dimensional 
primary near-resonant mode with m half-wavelengths within the channel length and its 
second and third forced harmonics. 
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The averaged Lagrangian is now made stationary with respect to variations in 

[16aLz + 8all,azll - 3ai111 
0 4 a 1 ~ ( ~ 2 -  38)  

8a,(4w2 - w i )  (9w2 - w:) 
+ 

7 (3.15) - YE1111 a1 P(P2 - 3q2) 
8p(9w2 - 0;) 

D, = 0, (3.16) 

a; w2p(p2 - 3q2) 
D3 = 1 6a:(9w2 - w i )  3a113~- 3a1113) 

w4a;p(p2 - 3q2) 
8a, a:(4w2 - w i )  (9w2 - w i )  (4al12-a211) (2a321-6a123-3a231) - 

(3.17) - YE1113 4P(P2 - 3q2) 
8paE(9w2 - w i )  ' 

a1(9w2 - 0;) 
2w2qfo +:w2a1111 4 d3P2 - 4,) El = - 

E, = 0, 

a; w2q(3p2 - q2)  
E3 = 1 6a:(9w2 - 0:) {a3111 + a1311 - 3a1131 - 3alll& 

w4a4 q(3p2 - q2) 
8a, ai(4w2 - w i )  (9w2 - w:) (4allZ-a211) (2a321-6a123-3a231) - 

Fl = F, = F3 = 0. 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

It should be noted that (3.15) and (3.18) have dependence upon the forcing. It is 
these terms in fo  that result in differences between the coefficient of cubic forcing found 
here and that given by Miles (1993), who omitted third harmonics. 

It is now possible to make ( L )  stationary with respect to variations inp and q at O(8) .  
This gives a second evolution equation 

aA a 
- = - ( p + i q )  = i ~ A * - ~ i ~ 2 A + N A I A 1 2 + i ~ ( A 3 + 3 1 A 1 2 A * ) - i h A I A 1 4 .  (3.22) a?, a?, 

which must be made compatible with (3.6). 
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Here 

249 

is the coefficient of cubic forcing, 6 = 2fi/a1 is a small correction to the linear forcing 
coefficient, h is the fifth-order conservative nonlinear frequency shift, and N is a 
coefficient of cubic damping (as in Miles 1993 ; Douady 1990; Milner 1991); this cubic 
damping term is introduced artificially, as it is absent from the Lagrangian formulation; 
however, the introduction of damping terms into the model could be done a priori by 
the inclusion of a dissipation function, as in Milner (1991) and Miles (1993). The form 
of the amplitude-dependence of the cubic forcing term is in agreement with Miles 
(1993), though the coefficient (3.23) differs from Miles' (1993) coefficient (B 3); this is 
because Miles only considered the first and second harmonics in his calculation, while 
we also considered the third harmonic. See Appendix C for a comparison between our 
cubic forcing and that of Miles. 

The inclusion of the third harmonic also resulted in our retaining the -iA,u2/8 term 
which Miles did not derive; this is a small correction to the linear frequency shift term. 
This term is numerically very small and can be neglected in (3.22) by including it 
instead in (3.6). This results in the linear frequency detuning coefficient being replaced 
by SZ - 2p2 /8  which is equivalent to a very small change in the origin. 

The coefficient h, which derives from the expression X in (3.4), has been calculated 
using MAPLE for the general case but is too lengthy to be given here, as it occupies 
several pages of text. However, h simplifies in two limiting cases, namely zero surface 
tension and infinite depth. For zero surface tension we find that 

~ K ~ R ( K )  
2 0 4 8 ( ~ ~  - 1)7(2~2 - 1) ( 4 ~ ~  - 1) ' 

h =  (3.24) 

where 

(3.25) 

R(K) = 6 4 - 6 6 ~ ~ - 4 6 8 7 ~ ~ + 3 3  1 7 0 ~ ~ -  101256~' 

+ 162208~~'- 139584d2+61 2 4 8 ~ ~ ~ -  10368d6, 

K = cash (k, d ) .  

For infinite depth we find that 

(3.26) 

where 

(3.27) 

S(5) = 432+ 13605- 12663c2-34495s3 

+ 16 1 4 4 ~ ~ -  1244455-9827256-47808c7, 

5=-. .  Yk2 
Pg 

In (3.26) the denominator is singular, as expected, at the second- and third-harmonic 
resonant frequencies 5 = and 5 (where this theory will break down). Notice that as the 
depth tends towards infinity in (3.24), and as the surface tension tends towards zero in 
(3.26) then h+ -243/128. 
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Figure 3 demonstrates how the full expression for h depends on depth, surface 
tension and the wavenumber parameter m as defined in (3.13) for a particular example. 
In figure 3 (c), the missing parts of the graph correspond to second and third harmonic 
resonances where IhJ becomes very large and the ordering breaks down. Figure 3(d) 
shows a ‘close-up’ view of the part of figure 3(c) which is encountered in the 
experiments discussed in 0 5. 

We now examine the compatibility of the two evolution equations (3.6) and (3.22), 
and so determine the region of hysteresis. 

4. The lower hysteresis boundary 
This section estimates the lower hysteresis boundary by analytically determining the 

curve above which finite-amplitude stationary solutions exist. The next section 
investigates this boundary computationally. 

4.1. Solution near F = p 

For steady solutions (aA/aT1) + e2(aA/aT2) = 0, it is useful to apply the expansion 

p + iq = u + iv + e2(r + is) + O(e4). (4.1) 

-pC+is2C+i~C*+i17~C~2C = 0, where C =  u+iv (4.2) 

Combining (3.6), (3.22) and applying (4.1) gives at O(1) 
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which results in constant equilibrium values for u, v (which are just those of (3.10) and 
(3.11)). At O(e2), (3.6), (3.22) and (4.1) give 

-pB+ 52 iB+ F, iB* + i17{2(ru +so) C+ IC I2B} 
+ ~ F , c * + ~ ~ ( c ~ + ~ ~ c ~ ~ c * ) + N c I c ~ ~ - ~ ~ c I c ~ ~  = 0, (4.3) 

At leading order, the lower boundary of the hysteresis region is given by (3.12), on 
where B = r + is and C is given by (4.2). 

which the amplitude C is 

52 
17 ICI2 = --, phase(C) =+(or$). (4.4) 

Substituting (4.4) into (4.3) and looking for equilibrium solutions gives rise to 
consistency conditions of the form 

where c and d are given by 

with C = 2 (- 52/n)1/2 eini4 from (4.4). 

c+id = iF, C* +i&(C3+ 3 IC12C*)+NCIC12-ihC[C14, (4.6) 

Clearly, for (4.5) to have a solution it is necessary that c = -d. This gives rise to 

which is valid for o < w1 (for 17 > 0). Notice that the h term does not contribute here 
because ph(C)  = an, in; accordingly, this result is exactly the same as that obtained 
from (1.3). Equations (3.2), (3.8 b), (3.12) and (4.7) together give the lower boundary of 
the hysteresis region as 

(4.8) 
e252 
17 

F = ~ + - ( N + ~ ~ ) + o ( ~ ~ ) .  

This gives hysteresis below F = p (for 52 < 0 when 17 > 0, and for 52 > 0 when 17 < 0) 
whenever N + 2 4  > 0, but it gives the lower hysteresis boundary above F = p 
whenever N + 2 4  < 0. 

It will be seen in $ 5  that our model gives better quantitative agreement with 
experimental observations than any previous theoretical model, the principal reason 
being that the fifth-order conservative term in (3.22) causes significant bending of the 
lower hysteresis boundary. Calculations extending (4.8) to next order in e2 (see 
Appendix D) give 

52 Q2 
F = p + 2 - ( N +  24)  + e4 - (84  P ( N +  24)  + 2h2Q2) + O(e6). 

17 4pn4 (4.9) 

Clearly, the fifth-order conservative term is responsible for bending the lower hysteresis 
boundary through the h2Q4 term. Although this calculation is only valid near to the line 
F = p, it supports the computational results of $5.  

4.2. Solution near minimum of neutral stability curve 
The lower hysteresis boundary has often been observed to bifurcate from the neutral 
stability curve at a point away from the minimum, and for there to be hysteresis 
beneath the minimum of the neutral stability curve at 52 = 0. Clearly (4.8) does not 
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model this behaviour, since the bifurcation from the neutral stability curve 
(F2 = p2 + 52’) appears to occur at 52 = 0, but the scalings break down when 52 N O(e2). 
With a change of scalings, however, these features can be found in our evolution 
equations. We now rescale so that 

52 = &,, I7 = en l ,  F = p+e2F,, 
and replace (4.1) with 

(4.10) 

p + iq = u + iv + e(r + is) + 2( U + i V) + O(e3). (4.1 1) 

These changes correspond to an analysis near to the minimum of the neutral stability 
curve. Note that (3.6) gives equilibrium solutions 

9 (4.12) 
- 52 f (F2  -p2)1/2 - C( - 52, & (2 ,~<)”~)  

I7 I7 
- IAI2 = 

so that the rescaling of I7 ensures that A (and hence C) remains O(1). 

dAldt = 0, gives 
Applying the above scalings to our evolution equations and supposing that 

(4.13) 1 
O(1): 0 = -pC+ipC*, 
O(E) :  0 = i521C+i171 1C(2C-pB+ipB*, 

0(e2): o = N ~ c ~ ~ c + ~ ~ ( c ~ + ~ ~ c ~ ~ c * ) - ~ ~ ~ c ~ ~ c + ~ ~ c *  
-pD +ipD* +iQ, B+i17, IC I2B 

+ 227, C(Re B Re C + Im B Im C), 

where C = u+iv, B = r+is, D = U+iV. 

left undetermined. At O(e) we have 
At O(1) we have that phase (C) = an, -$IT as in (4.4), though the amplitude of C is 

- s> = - u(52, + 2I7,UZ). 
At O ( 2 )  we have 

(4.14) 

) .  (4.15) 
- 2Nu3 - 4 4  u3 -4hu5 + 52, s+ 217, u2(r + 2s) -4 u 
- 2Nu3 - 4 E  u3 + 4hu5 -52, r - 2I7, u2(2r +s) -4 u 

The consistency condition on (4.15) along with (4.14) gives 

u[4I7~u4+4u2(I7,52,-p(N+2’))+52~-2~p] = 0. (4.16) 

The non-trivial roots of (4.16) coalesce when 

(4.17) 

which is the lower hysteresis boundary. For (4.16) to have real non-trivial roots it is 
also necessary that 

(4.18) 1 A ~ + ~ ‘ )  for nl > 0, 

p(N+2’) for nl < 0. 

171 

I71 

52, < 

or 5 2 1  > 

The equation for the neutral stability curve under these scalings is 

(4.19) 
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Solving (4.17) with (4.19) gives the point of bifurcation of the lower hysteresis 
boundary from the neutral stability curve. This is 

(4.20) 

Equation (4.17) gives rise to a lower hysteresis boundary similar to (4.8), but shifted 
slightly; this correctly gives rise to a tangential bifurcation from the neutral stability 
curve, whereas (4.8) incorrectly meets the neutral curve at an angle at Q, = 0. This 
bifurcation point agrees with the corresponding result of Craik & Armitage (1995). 

4.3. Solutions close to neutral curve for  Q - 0(1) 
We now assume that 17 = e 2 f i  where fi is O(1). 

Applying the above rescaling and (4.1) to our stationary evolution equation gives 

(4.21) 

where C = u+iv, B = r +is. Note that the coefficient of cubic forcing is now taken to 
be FT = F,r+ O(e2), in line with Craik & Armitage (1995). 

From the O( 1) equations we have 

1 Fo = ( j ~ ~ + Q ~ ) l / ~ ,  

phase (C) = 8 where ePzi8 = 

The O(e2) equations give 

(4.22) 

(4.23) 

where 

and ph(C) is known from (4.22). 

Q = -[ifilC(2C+i< C*+N(C(2C+iF,T(C3+3 (CI2C*)-ih (C(*CC] (4.24) 

As the determinant of (4.23) is zero, we need 

(Q+F,)ReQ+pImQ = 0, (4.25) 

(4.26) 
which is equivalent to 

using (4.22). 
Re [(l -eZi@) Q] = 0, 

This gives the trivial solution and also a quadratic equation in ICI2 which has roots 

where 

(4.27) 

A (A2 - 4hSZ<(jL2 + Qz)l/z)l/z 
2hQ 

ICl2 = 

A = Qfi-pN-22r(2Q2+p2). 

The roots of (4.27) coalesce at the lower hysteresis boundary, where 

( Q f i -  p N -  2r(202 + p2))2 

4hQ(p2 + 522)1/2 
Fl = (4.28) 
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FIGURE 4. Lower hysteresis boundaries predicted by (4.31). Parameters p = 0.1, I'= 1 . 1 ,  
c2 = 0.047, Qbi, =z 0.05, h = -0.1, -0.2, -0.8. 

It should be noted that for hysteresis it is necessary that F, < 0 which implies that 
hi2 < 0. 

It is also necessary that the right-hand side of (4.27) must be positive. If h52 < 0 then 
it is necessary that 52 < 52- or 52 > 52, where 

(4.29) 

assuming r > 0 (which is generally true - see Appendix C). Solving (4.28) together 
with the expression for the neutral curve shows that both 52- and 52, correspond to 
bifurcation points. Substituting I? = 17/e2 into these bifurcation points and expanding 
in a Taylor series gives 

C 2 P  C 2 P  a- = - ( N +  2 4  = - ( N +  2&), 
17 I7 (4.30) 

which is identical to (4.20), and 52, = O(1/e2) which is probably spurious. 
The behaviour of the lower hysteresis boundary near to the bifurcation point can be 

examined by putting 52 = Qbif + A  in (4.28), where Q,, is the frequency offset 
corresponding to the bifurcation, and [dl l Q b i f l .  Then 

(4.3 1)  

Therefore as Ihl decreases, the lower hysteresis boundary will move more quickly away 
from the neutral curve. This result seems paradoxical; but since the scaling requires h 
to be O(1), no singularity is expected as Ih( +O.  
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Equation (4.3 1) is significant because it shows the fifth-order conservative term 
appearing in an expression for the lower hysteresis boundary at the lowest possible 
order, and this expression describes the lower hysteresis boundary at a point that is 
near to the neutral curve. So the fifth-order conservative term is playing an important 
role even close to the bifurcation point. It will be seen in the next section that the fifth- 
order conservative term also has large effects on the lower hysteresis boundary far from 
the neutral stability curve. 

Figure 4 shows possible hysteresis diagrams produced from (4.31) near to the 
bifurcation point. It can be seen that increasing Ihl again causes an increase in the 
upwards curvature of the lower hysteresis boundary, though not for the same reason 
as in (4.9). Note that Ihl + 1 would give downwards bending, but sufficiently small h 
values are ruled out by scaling assumptions. (Though (4.27) has simple poles at both 
0 = 0 and h = 0, this subsection has assumed that SZ and h are 0(1).) 

5 .  Numerical work 
Equations (3.6) and (3.22) give the composite equation 

where the forcing expansion (3.2) has not been applied, and the small shift in the origin 
caused by the linear frequency detuning term in (3.22) has been ignored. Equation (5.1) 
has been examined computationally using a FORTRAN NAG routine. The model equation 
(1.3), previously discussed by Craik & Armitage (1995), which omits the h-term, has 
also been investigated numerically. 

In order to compare theory with experiments, it is necessary to determine the scaling 
parameter 2 and to estimate N. Using (3.1), the r.m.s. acceleration is given by 

At the minimum of the neutral stability curve F = 2f/a1 = p. Therefore 

(5.3) 

where a is the experimentally observed r.m.s. acceleration at the minimum of the 
neutral stability curve. Without loss of generality, we choose p = 1,  so that (5.3) 
gives c2. For the experimental observations shown in figure 1 ,  this gives 2 = 0.047 for 
the 22 half-wavelength mode. (The choice of p = 1 is equivalent to expanding the 
evolution equation in terms of a linear dissipation parameter e2p.) 

Equations (5.1) and (1.3) were each solved numerically by searching for the value of 
the forcing F that corresponds to the disappearance of finite-amplitude equilibrium 
solutions, for various chosen frequencies 0. A comparison of the hysteresis diagrams 
resulting from three different models is shown in figure 5. There are two possible 
choices for the coefficient of cubic forcing, namely 

(i) = f ~  or (ii) =yo r, (5.4) 
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F_IIGURE 5. Existence of finite-amplitude fixed points for four different models: (a) our model (5.lLwith 
F,, (b) our model (5.1) with F,, and ( c )  equation (1.3) with F, and ( d )  equation (1.3) with F, for 
N = 1.51. Parameters are m = 22, I = 0.7, d = 0.01352, h = 0.02, ,u = 1, N = 2.43 except in (4, 
~ 2 = 0 . 0 4 7 , h = - 2 . 1 , 1 ~ = 0 . 2 5 ,  r= 1.1. 
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n 

FIGURE 6. Existence of finite- amplitude fixed points for six different values of N .  
Other parameters as in figure 5. 

where r is the expression in square brackets in (3.23). Cubic forcing coefficient 6 is 
likely to be the physically more realistic case where it is taken to be proportional to the 
actual linear forcing f, rather than its fixed value f, = ;pal at the minimum of the 
neutral stability curve. Figure 5 shows four lower hysteresis boundaries, for (a)  
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FIGURE 7. Existence of finite-amplitude fixed points for four different values of 2 
Other parameters as in figure 5. 

equation (5.1) with cubic forcing given by E, (b) equation (5.1) with cubic forcing given 
by E, (c) equation Q.3) with cubic forcing given by 8 and ( d )  equation (1.3) with cubic 
forcing given by 4 but with the coefficient of cubic damping chosen so that the 
boundary coincides with (a)  vertically beneath the minimum of the neutral curve. 

It can be seen that the effect of the fifth-order conservative term in (5.1) is to bend 
the lower hysteresis boundary and to shift the minimum in the lower hysteresis 
boundary to smaller values of the frequency Q. Bending of the lower hysteresis 
boundary was seen also in $84.1 and 4.3 and Appendix D, again caused by the fifth- 
order conservative term. Craik & Armitage (1995) pointed out that choosing the 
coefficient of cubic forcing to be 4 rather than 6 (see (5.4)) will cause the lower 
hysteresis boundary to bend. Comparing the three lower hysteresis boundaries in figure 
5, it can be seen for this example that the presence of the fifth-order conservative term 
curves the lower hysteresis boundary far more than the effect produced by using 6 
instead of 4. 

The effect of varying the coefficient of cubic damping N is shown in figure 6 for a 
depth of 1.3 cm. These graphs show our model (5.1) along with 8 (from (5.4)) for six 
different values of N .  The line for N = - 5 shows the type of diagram that Douady 
( 1  990) used to explain his observations, where hysteresis was not found, while the lines 
with N > 0 show hysteresis similar to that observed by Simonelli & Gollub (1989) and 
Craik & Armitage (1995). 

Figure 7 shows the effect on the lower hysteresis boundary of varying e2. As 
expected, as e2 tends towards zero, the hysteresis boundary approaches the horizontal 
line F = p. 

Figure 8 shows the experimental data plotted on the same diagram as the lower 
hysteresis boundaries predicted by our model (5.1) with 6,  for a variety of values of 
the coefficient of cubic damping N ,  where the other coefficients have been chosen to 
match the experimental situation at depth 1.3 cm. This allows a value of N to be 
selected which gives the best agreement between theory and experiment, and hopefully 
this gives a good estimate of the parameter. (Milner (1991) and Miles (1993) offer 
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FIGURE 9. Comparison between theoretical and experimental lower hysteresis boundaries for a water 
depth of 1 cm, showing the boundaries predicted by our model (5.1) and by equation (1.3), as well 
as the experimental lower hysteresis boundary and neutral stability curve, for acceleration (m s-') 
against period (ms). Parameters are N = -0.43 (-0.68 for equation (1.3)), ,u = 1, h = -0.85, 
IZ = -0.82, r = 2.7, €2 = 0.053. 

analytical expressions for N ,  but both rely upon assumptions that do not hold in our 
case.) However, it can be seen that there is not a unique theoretical curve which best 
agrees with the experimental results, and the choice is subjective. 

The ultimate test of this paper is whether our model gives significantly better agreement 
with experimental results than the previously most accurate model. A comparison is 
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made, here and in $6, between our model (5.1) (with cubic forcing given by e) and with 
experimental results, for all three depths for which observations are available. The 
results are shown in figures 9 and 10. For both models, and for each depth, the 
coefficient of cubic damping N used in the computations was selected to give the ‘best’ 
agreement between that model and experimental results. The criterion used for this 
selection (except in figure lO(c) - see $6) was to choose the value of N which fixes the 
theoretical lower hysteresis boundary at the same point as the experimental boundary 
when Q = 0, i.e. vertically beneath the minimum of the neutral stability curve. 
Obviously other criteria could have been adopted. 

Figure 9 shows the comparison between theory and experiment for the 1 cm depth 
case. The experimental results for figure 9 come from Craik & Armitage (1995) (22 
half-wavelengths). Two things should be noted about the 1 cm depth case. First, the 
coefficient I7 has changed sign from the 1.3 cm depth experiment, and this results in a 
qualitative difference. Secondly, the minimum observed in the lower hysteresis 
boundary (see figures 5, 6 and 7) has been shifted into frequencies 52 where it is 
observed physically. 

Figures 10(a) and 10(b) show the comparisons for water depth of 1.3 cm and 2 cm 
(the 2 cm depth experimental results come from the 22 half-wavelength observations of 
Craik & Armitage 1995). The two graphs show the boundaries computed from (5.1) by 
considering the existence of stationary points. Figure 5 shows that for the 1.3 cm depth 
experiment, the lower hysteresis boundary calculated from (5.1) (line a) lies above the 
boundary calculated from (1.3) (line d), in the experimental frequency range. So we can 
see from figure 10(a) that (5.1) gives better agreement with the experiment than (1.3). 
The extra bending of the lower hysteresis boundary caused by the fifth-order 
conservative term is the main cause of this improvement. Similarly, the 2 cm depth 
observations are closer to the boundary given by (5.1) than the boundary given by 
(1.3). 

Agreement between theory and experiment is satisfactory, but not spectacularly 
good. In particular, the trend of the experimental results at the greatest periods (for the 
two larger depths) is not well captured theoretically. The work of the next section 
suggests why this is so. 

6. Stability of finite-amplitude solutions 
Stability of the finite-amplitude wave solutions will now be considered. If A ,  is a 

stationary solution of (5.1), and A = A,+B where B is small, then the combined 
evolution equation becomes, upon linearization with respect to B, 

B = -,uB+ii2B+iFB*+i171A012B 

+2iI7A,(ReA0Re B+ImA,Im B)+3is2FrA; B 

+ e2NIA,J2B+ 2e2NA, (Re A ,  Re B+ Im A ,  Im B) 

+ ~ ~ C ~ F ~ I A , ~ ~ B *  +6is2FrA,* (Re A ,  Re B+ImA, Im B) 

-is2h IAJ4B-4ie2hA, ~A,~2(ReA,ReB+ImA,Im B). (6.1) 

Expressing B in (6.1) in terms of real and imaginary parts as B = B, + iBi gives two 
real equations. These can be rewritten in the form 

(2) = M(:)? 
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where M is a two-dimensional real matrix. The characteristic equation of M is 

cr2+2cr(p-2262NIA012} 

+p2 +02 - F 2  + 3(e4N2 + 17'- 6 e 4 P F 2 )  IA,I4 

+ 4(Z7Q-pe2N- 3e21'F2) IA,I2 + 2FlA,12 cos 2$(6e252T- I7) 

-2F262NIA,12sin2$+4e2Fcos2$ (h+31TT) 

- 12e4FTh IA,I6 cos 24 + 18e4F2r2 IA,I4 cos 44 

- 12e4NFTIA,14 sin 2$ - 6e252h pol4 - 8e217h IA,I6 + 5e4h2 IA,18 = 0, (6.3) 

where cr is an eigenvalue so that B, and Bi are both proportional to Re eut. This allows 
the stability of finite-amplitude solutions A ,  to be investigated, using the following 
algorithm. 

For a given value of the forcing F and frequency Q, all stationary solutions A ,  are 
found numerically (see $5). Each of these in turn is substituted into (6.3), resulting in 
a quadratic equation in cr, for each stationary point. The stability of each stationary 
point is determined by solving the corresponding quadratic equation and examining 
the real part of the eigenvalues. If any of the available stationary points is stable then 
the point (52, F )  can be labelled as a stable point in parameter space. This is repeated 
over a fine grid of (52, F )  points, giving a stability diagram in the forcing-frequency 
plane. 

Figure 10(a) shows the results for the 1.3 cm depth experiment. Two regions are 
identified : one region indicates the existence of stable finite-amplitude stationary 
solutions (corresponding to self-stable standing waves) ; the other region describes 
where the finite-amplitude stationary solutions are all unstable. The dashed line gives 
the boundary between these two regions (this line is labelled the stability boundary). 
This line bifurcates from the lower hysteresis boundary calculated in $5 near to the 
point 52 = -0.5, F = 0.76. Remarkably, the experimental lower hysteresis boundary 
almost coincides with this theoretical stability boundary. Accordingly, here there is 
very good agreement between theoretical and experimental results, when the stability 
of equilibrium points, as well as their existence, is taken into account. 

For the 1 cm depth observations, all finite-amplitude stationary points were found 
to be stable. (This is because the estimated coefficient of cubic damping is negative in 
this case.) Therefore taking stability into consideration does not give an improved 
theoretical prediction for the lower hysteresis boundary calculated in $ 5, for this depth. 

Figure 10(b) shows the stability diagram for the 2 cm depth experiment. Here the 
agreement is not so good, with the experimental points following the lower stability 
boundary, but continuing out of the stable region into the unstable region. However, 
if the coefficient of cubic damping (which as explained in the previous section was 
chosen in a rather ad hoc fashion) is chosen differently, then better overall agreement 
with the stability calculation can be achieved. Figure lO(c) shows the stability diagram 
for N = 3.7 (as opposed to N = 6.4 for figure lob) .  Here the lower hysteresis boundary 
calculated in $5 coincides with the lower stationary point stability boundary. In this 
case, limit cycles were investigated as well as fixed points. This was done by numerically 
solving the evolution equation (5.1) with a Runge-Kutta scheme, for a variety of initial 
conditions. Figure lO(c) suggests that some of the standing waves observed in the 

FIGURE 10. Stability diagrams for water depths of (a) 1.3 cm (b )  2 cm with N = 6.4 and (c) 2 cm with 
N = 3.7. Parameters are (a) N = 2.43, ,u = 1, h = -2.1, Z7= 0.25, r= 1.1, e2 = 0.047, (b)  and (c) 
LL = 1, h = -2.1, n= 0.42, r= 0.59, €2 = 0.047. 
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FIGURE 11. Phase plane diagram for figure 1O(c) at SZ = - 1.5, F = 0.7. 

experiment were stable limit cycles, rather than stable stationary points. An example 
of stable limit cycles is given in figure 11, which shows a phase plane diagram for 
IR = - 1.5, F = 0.7. Physically a stable limit cycle corresponds to a standing wave 
where the amplitude experiences a slow oscillation on top of the fast sinusoidal 
oscillation of the wave motion. It can be seen that the limit cycles are relatively small 
compared with the amplitude JAl = ( p z  + q2)lI2, so this small modulation would not be 
easily observed in an experiment. Further work is in progress on time-dependent 
solutions of (5.1). 

7. Conclusions 
We have examined, both theoretically and experimentally, the hysteresis region 

within which a flat surface or standing waves may occur, with Faraday excitation. We 
have confirmed the important roles of nonlinear cubic forcing and damping terms, 
previously incorporated into theoretical models by Miles (1993) and Craik & Armitage 
(1995); but we also find that a fifth-order conservative frequency shift must not be 
neglected. 

The variational method due to Miles (1976) has been extended to allow the 
coefficient of this term to be calculated. This involved a significant use of symbolic 
computation. The Lagrangian given in $2 can be used in future to calculate the 
coefficient of the fifth-order conservative term for different geometries and for multiple 
wave interaction problems. We suggest that the fifth-order conservative term may also 
be important in other fields of interest in Faraday resonance, for example, pattern 
selection processes. Our derivation has also led to a correction of Miles’ (1993) estimate 
of the coefficient of cubic forcing. 

We have not calculated the damping coefficients theoretically. However, we show 
how the coefficients of linear and of cubic damping can be estimated from the 
experimental data: but the latter estimate remains a rather subjective one. For depths 
1.3 cm and 2 cm, our estimates show the cubic damping coefficient to be positive, and 
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so opposite in sign to linear damping; but both damping coefficients appear to have the 
same sign for the 1 cm depth. (A purely theoretical determination of the cubic damping 
coefficient is a difficult task that we have not yet attempted: but see Milner 1991 and 
Miles 1993.) 

The lower hysteresis boundary is normally the boundary above which any finite- 
amplitude stationary points exist, since locally-stable stationary points are then usually 
present. However, in some cases, these stationary points may all be unstable; then the 
lower hysteresis boundary should correspond to the boundary of stability of the 
stationary points. We have obtained local analytical results for the hysteresis boundary 
in g4.1-4.3. Global numerical results for a composite evolution equation are given in 
$5 and questions of stability are treated in $6. 

Good agreement between theory and experiment is achieved for our 1.3 cm water 
depth case, when fixed point stability is taken into account. Agreement with the 1 cm 
and 2 cm depth observations of Craik & Armitage (1994) is also quite good: but, for 
the latter, we conjecture that some observations may have corresponded to stable limit 
cycles, predicted by our model, rather than to stable stationary points. 

S. P. D. thanks the Engineering and Physical Sciences Research Council for their 
support through an earmarked studentship. 

Appendix A. Experiment 
Experiments have been conducted using the same long rectangular tank as in Craik 

& Armitage (1995). Standing waves of 21,22 and 23 half-wavelengths were examined 
in a Perspex tank of length 69.9 cm, width 2.82 cm and depth 7.7 cm which was 
suspended from two flat springs, allowing only vertical motion. The tank was driven 
by two vibrators, one near each end, connected in a series circuit. The circuit also 
contained a control box for the vibrators (setting frequency and acceleration of 
forcing), a counter to measure the frequency of oscillation and resistors to balance the 
two vibrators. A plate accelerometer was used to measure the r.m.s. forcing. 

The depth of water used was 1.352 cm (measured using a vernier scale telescope). 
Fine controls on the legs of the base of the apparatus allowed the tank to be levelled. 
Distilled water was used with Kodak Photoflow wetting agent (proportion of wetting 
agent to water approximately 1 :393) to reduce capillary hysteresis effects on the 
Perspex walls and to avoid problems with inadvertent contamination of the surface. To 
reduce evaporation, a lid was added. The accelerometer was used in conjunction with 
the resistors to balance the vibrators by measuring the acceleration of the tank at each 
end when no waves were present; the output of the accelerometer could also be 
examined on an oscilloscope to check that the motion of the tank was sinusoidal. 

A frequency of oscillation would be chosen with an initial acceleration that was too 
small to generate waves on a flat surface. The forcing was then gradually increased with 
an increment of about 0.01 m s-', with this being maintained for at least ten minutes 
each time before making a further change. When the forcing crossed over the neutral 
stability boundary, then it took about ten minutes for the standing waves to slowly 
build up from the flat surface. As in Craik & Armitage (1995), frequencies were chosen 
so that three-dimensional waves that vary across the width of the tank were avoided. 
Once a standing wave was obtained, the forcing was slowly decreased again until the 
wave disappeared. This whole process was repeated for a range of frequencies. 

Also a particular standing wave mode could be followed by slowly changing the 
frequency of oscillation. In this way, the lower hysteresis boundaries were found to 
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extend beneath the neutral stability curves of neighbouring wave modes. As the 
frequency was further altered, the standing wave would suddenly jump to another 
mode with one less half-wavelength. 

Figure 1 shows the experimental results for 21,22 and 23 half-wavelengths. These are 
similar to the experimental results of Craik & Armitage (1995) for their 2 cm depth 
case, but unlike the results of their 1 cm depth case. 

Appendix B. An example of the derivation of (3.22) 
The derivation of (3.22) is very algebraically demanding. It has been performed using 

the symbolic manipulation package MAPLE and the algebra covers several hundred 
pages. The average Lagrangian (3.4) has not been given fully in this text and the h 
coefficient in (3.22) has not been given except for two limiting cases. Here we will show 
the derivation in more detail by choosing a particular numerical example. The 
parameters chosen for this are rn = 23 half wavelengths in a channel length of 
I = 0.7 m and depth d = 0.01352 m. The capillary length is taken to be h = 0.002 m. 
Taking (2.30) and (3.14) gives the natural frequencies and the wavenumbers of the 
primary mode and its harmonics. These can be used to calculate (2.20) to (2.23). 
Substituting (3.1), (3.2) and (3.3) into (2.31), averaging over a 2n/w interval o f t  and 
using (3.5) gives 

( L )  = Terms in e4 already given in (3.4) 

+ 56.1f1(P2 - 4') + 6 1 .2f0(p4 - q4) + 1 12f0(pD1 + qE,) 
+~(1.30D~-O.l89D~) (p2-3q2) 

+q(1.30El-0.189E3)(3p2-q2) 
+ 2.46(D; + E;) + 0.176(0; + Ei)  + 0.0353(D; + E;) 

+ o(€8). (B 1) 
This corresponds to (3.4) with (3.5) substituted into it. 

Note that w = w1 in (B 1) since it is not necessary to have the h coefficient dependent 
upon o. We are interested only in stationary solutions here so put ap/thl = i3q/tk1 = 0. 
The average Lagrangian can now be made stationary with respect to variations in D,, 
En and F,. When these expressions are substituted back into the Lagrangian it becomes 

( L )  = terms in e4 

+e610P3 0.614 - q - - p  +31.7fo(p4-q4) { (Z2 ::2 ) 
-0.21 1(p2+q2)3-0.0384~2(p2+q2)+56.1 

+ O(e8). 
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This gives the evolution equation (i.e. (3.22) and (3.23) without N-term) 

* = 183f,q+206foq3-2.07q(p2+q2)2+0.125p2g, 
a 7 2  

-- a' - 183f,p+206fop3+2.07p(p2+q2)2-0.125p2p, 
3 7 2  
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which therefore gives h = -2.07 in this case. The last term in each equation in (B 3) is 
a small frequency shift term. This type of term has already appeared in (3.6) and it can 
be absorbed into ii2A to cause a shift in the origin on the hysteresis diagram. (Since the 
coefficient is very small this shift will be negligible.) Note that the dependence upon the 
coefficient of linear damping comes from (3.8b) and (3.12). 

Appendix C. Comparison with Miles (1993) 
The cubic forcing coefficient calculated in Miles (1983) differs from the one 

calculated here (3.23) because Miles considered the first and second harmonics, but not 
the third harmonic. We find that there are two contributions to the cubic forcing: a 
cubic interaction between the first and second harmonics and the forcing (which Miles 
(1993) included), and a quadratic interaction between the third harmonic and the 
forcing (which Miles (1993) omitted). (However, it should be pointed out that the extra 
work in calculating the quadratic interaction between the third harmonic and the 
forcing is considerable, and if Miles had carried out this calculation then he would have 
been in a position to calculate the fifth-order conservative term as well if he had 
chosen.) 

We can rewrite our expression in terms of depth, surface tension and wavenumber 
parameters, so as to enable comparison with Miles' (B 3 )  expression. In the limiting 
case of zero surface tension, we get for our expression 

(4 COSh' (k, d )  + 3) (4 COSh2 (k, d )  - 1 )  ' =& 16 tanh (k ,  d )  (cosh' (k ,  d )  - 1)2 

and for Miles' coefficient 

- tanh (k ,  d )  (4  cosh4 (k, d )  - 1 )  
FMizes =fkl 4 cosh2 (k ,  d )  (cosh2 (k, d )  - 1 )  

For the limiting case of infinite depth, we get 

1 6g3 + 9g2yk; + 6gy2k; + 40y3k! ' =&' 16(g + k ; y )  (g-  2k;y)  (g + 4k;y)  ' 

while for Miles' coefficient 

where y = y/p.  
Notice that as the depth tends towards infinity in (C 1 )  and (C 2), and as the surface 

tension tends towards zero in (C 3)  and (C 4), then all four of the above expressions 
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FIGURE 12. (a) Coefficient of cubic forcing given by (C 1) and (C 2). (b)  Coefficient 
of cubic forcing given by (C 3) and (C 4). 

tend towardsfi,. Figure 12 shows how our coefficient compares to Miles’ coefficient 
over a range of depths and surface tensions. 

Appendix D. The bending of the lower hysteresis boundary by the fifth- 
order conservative term 

It has already been remarked in 5 5 that the fifth-order conservative term is found to 
bend the lower hysteresis boundary in computational studies of the evolution equation 
(5.1). Here the local analysis of 54.1, which gave an expansion for the lower hysteresis 
boundary (4.8), will be extended in order to demonstrate this effect analytically. 
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Evolution equations (3.6) and (3.22) have already been determined. If one is justified 
in neglecting the fifth-order damping and forcing terms as well as the seventh-order 
conservative term (which we do for simplicity), then the next evolution equation in this 
sequence is 

i3A 
- = i&AA*+i&(A3+3IAl2A*), 
a 7 3  

where 
forcing coefficients respectively, with the forcing now expanded as 

= (2/a,)f2 and & =f,({/f,) are small corrections to the linear and cubic 

(D 2) f = f, + €yl + €y2 + O(2) .  

Note that a third slow time 73 = e6wt has been introduced. 
Now we perturb about (3.12) and (4.8). Equation (4.1) is extended to 

p + ig = u + iu + c2(r + is) + e4(R + i s )  + O(2). (D 3) 

Again C = u+iu, B = r+is and G = R+iS giving (4.2) to (4.8). At the highest order 
the system of equations takes the form 

(-EL; -52-p "+")(") s = (L), 
where P and Q are known functions of (u, u, r ,  s). 

From (4.5), 

(52 * P). 
c -  (52 +p) s 

52-P 
r =  

Putting (4.7) into (4.6) gives 

For (D 4) to be consistent, we require that P+ Q = 0. This is, however, a single 
equation in two unknowns, namely & and s, if (D 5) and (D 6) are substituted into 
P + Q = 0. We require to find &, but clearly we cannot do so while s remains unknown. 

Now we can write 
r + is = b, exp (-+in) + b, exp (+in). (D 7) 

The second component of (D 7) lies along u + iu since phase (u + iu) = an. Therefore b, 
contributes only to an infinitesimal change in IC I = (- 52/17)'/z and so an infinitesimal 
change in 52. So, we may choose to set b, = 0, effectively without loss, to obtain 

C hQ2 -252 - r = s = - = + -  - 
2p -4J n ) . 

Then, phase (r + is) = -in, the component b, being orthogonal 
The calculation which gives (4.9) is readily completed, using 

which comes from (3.8), (3.12) and (4.8). 
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